Interlink Converter with Linear Quadratic Regulator Based Current Control for Hybrid AC/DC Microgrid
نویسندگان
چکیده
A hybrid alternate current/direct current (AC/DC) microgrid consists of an AC subgrid and a DC subgrid, and the subgrids are connected through the interlink bidirectional AC/DC converter. In the stand-alone operation mode, it is desirable that the interlink bidirectional AC/DC converter manages proportional power sharing between the subgrids by transferring power from the under-loaded subgrid to the over-loaded one. In terms of system security, the interlink bidirectional AC/DC converter takes an important role, so proper control strategies need to be established. In addition, it is assumed that a battery energy storage system is installed in one subgrid, and the coordinated control of interlink bidirectional AC/DC converter and battery energy storage system converter is required so that the power sharing scheme between subgrids becomes more efficient. For the purpose of designing a tracking controller for the power sharing by interlink bidirectional AC/DC converter in a hybrid AC/DC microgrid, a droop control method generates a power reference for interlink bidirectional AC/DC converter based on the deviation of the system frequency and voltages first and then interlink bidirectional AC/DC converter needs to transfer the power reference to the over-loaded subgrid. For efficiency of this power transferring, a linear quadratic regulator with exponential weighting for the current regulation of interlink bidirectional AC/DC converter is designed in such a way that the resulting microgrid can operate robustly against various uncertainties and the power sharing is carried out quickly. Simulation results show that the proposed interlink bidirectional AC/DC converter control strategy provides robust and efficient power sharing scheme between the subgrids without deteriorating the secure system operation.
منابع مشابه
BIC based on Modified Droop Control of Hybrid AC/DC Microgrid with PV/Wind/ESS under Variable Generation and Load Conditions
The idea of a microgrid is created by utilizing more diverse ac or dc distributed generation (DG) sources along with an energy storage system (ESS) and loads. The most efficient and reliable selection of ac and dc microgrids is a hybrid ac/dc microgrid. The hybrid microgrid largely overcomes the shortcomings of standalone ac or dc microgrids. A bidirectional interlinking converter (BIC) is util...
متن کاملCoordination Control Strategy for AC/DC Hybrid Microgrids in Stand-Alone Mode
Abstract: Interest in DC microgrids is rapidly increasing along with the improvement of DC power technology because of its advantages. To support the integration process of DC microgrids with the existing AC utility grids, the form of hybrid AC/DC microgrids is considered for higher power conversion efficiency, lower component cost and better power quality. In the system, AC and DC portions are...
متن کاملA New Power Management Approach for PV-Wind-Fuel Cell Hybrid System in Hybrid AC-DC Microgrid Configuration
The hybrid AC-DC microgrid (HMG) architecture has the merits of both DC and AC coupled structures. Microgrids are subject to intermittence when the renewable sources are used. In the HMG, since power fluctuations occur on both subgrids due to varying load and unpredictable power generation from renewable sources, proper voltage and frequency regulation is the critical issue. This article propos...
متن کاملA New PV/Fuel Cell Based Bidirectional Converter for Microgrid Applications
The penetration of renewable energy in modern power system, microgrid has become a popular application worldwide. In this paper bidirectional converters for AC and DC hybrid microgrid application are proposed as an efficient interface. To reach the goal of bidirectional power conversion, both rectifier and inverter modes are analyzed. In order to achieve high performance operation and single-ph...
متن کاملDC Bus Voltage Regulator for Renewable Energy Based Microgrid Application
Renewable Energy based microgrids are being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. The technical challenges associated with the operation and controls are immense. Electricity generation by Renewable Energy Sources is of stochastic nature such that there is a demand for regulation of voltage output in order to ...
متن کامل